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We consider a three-dimensional model of active Brownian particles interacting via a Morse-type potential.
The system exhibits two modes of motion: translation and a coherent rotation in a torus-shape structure. We
observe noise-induced transitions in both directions between the two states. These occur at different noise
intensities, thus leading to a hysteresis curve. For certain parameter regions, the system switches persistently
between the states such that the center of mass alternates between ballistic and diffusive motion. The coherent
rotation leads to a pronounced mean angular momentum that changes its direction diffusively. We derive an
analytic expression for the diffusion of the angular momentum of one particle in an external harmonic potential
and show that it is always faster than the stochastic switching of the direction of motion in the two-dimensional
case.
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I. INTRODUCTION

Various species of animals assemble in flocks or herds
that self-organize without a leader �1,2�. Birds and fish �3�
are common examples, but also insects �4�, locusts �5�, daph-
nia �6�, and bacteria �7� show this kind of behavior.

There are two main approaches commonly used to de-
scribe collective motion: a continuum and an individual-
based one. Continuum models typically describe swarms by
a density function ��r�� and a velocity vector field u��r��
�8–12�. Individual or agent-based models use differential
equations �13–15� or discrete time evolution algorithms �16�
for each particle and consider ensembles of interacting ob-
jects.

Both types of models exhibit various types of collective
motion, which can be classified as a mobile state with a
nonzero center-of-mass velocity and an immobile state with
a fixed center of mass. In the immobile state, we can further
distinguish between disordered and collective, for example
rotational, motion of the individual particles. Depending on
the parameters of these models such as density or noise,
phase transitions between the different states are observed.

One common transition, on which we will focus in the
present work, is a noise-induced transition from translation
to rotation �17�. However, there are few studies concerning
the backwards transition from rotation to translation, since in
most cases the mobile state rather than the immobile state
proves unstable �18,19�. Kolpas et al. �20� found this transi-
tion in one spatial dimension with discrete zones of interac-
tion. Huepe et al. �21� studied a two-dimensional system
with velocity alignment and found bursts of disordered mo-
tion in the ordered phase.

In the present paper, we extend a particle-oriented algo-
rithm to three spatial dimensions. Compared to the two-
dimensional case, we elaborate on two findings.

First we consider a set of N identical self-propelled par-
ticles interacting globally via a pair potential. We find that
adding a repulsive part to the interaction leads to noise-
induced transitions not only from translation to rotation but
also vice versa. These transitions occur at different noise

intensities, thus leading to a hysteresis curve. This effect was
not observed so far in two dimensions, where the rotation
was stable even without noise. The aim of our study is to
investigate the dependence of the critical noise intensity on
the system parameters. For a certain parameter region, the
critical noise intensities almost coincide. Then the system
switches spontaneously between the two states.

In two dimensions, the rotational motion of the particles is
restricted to clockwise or counterclockwise direction. To per-
form a stochastic switch between the two directions, the par-
ticle has to cross a barrier where the angular momentum goes
through zero. A new effect that occurs in the three-
dimensional case is the diffusion of the angular momentum.
The particle can change its direction of motion continuously.
We analyze the diffusion of the angular momentum of one
particle in a three-dimensional external harmonic potential
and compare our results to the two-dimensional case. We
will show that the diffusion of the angular momentum in
three dimensions leads to a faster change of the rotational
direction than the switching in two dimensions, regardless of
the noise intensity.

II. MODEL

We consider a set of N identical active Brownian particles
�22,23� in three-dimensional space with positions r�i, veloci-
ties v� i �i=1, . . . ,N�, and unit mass. The equations of motion
read

r�̇i = v� i, �1a�

v�̇ i = − ��v� i�v� i − �
k=1

k�i

N

�� iUM�r�i − r�k� + �2D��i. �1b�

The particles are subject to a friction force ��v��, which con-
sists of a positive and a negative part. The negative part
serves as an energy pump, thus accounting for the active
motion of the agents. We use the Rayleigh friction �24�
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��v�� = − �1 + �2�v� · v�� , �2�

which in the absence of other forces results in a stationary

velocity v0=��1

�2
. A biological motivation for this type of

friction is given in �25,26�.
The last term in Eq. �1b� is a stochastic force of intensity

D which models the individual behavior of the agents. The

forces ��i are independent for different particles and charac-
terized by the correlation functions

��n,i�t�� = 0, ��n,i�t��m,j�t��� = �ij�nm��t − t�� , �3�

with i , j�1, . . . ,N; n ,m�x ,y ,z.
We use two types of potentials. In the first part of this

work, the particles interact globally via a pair potential. A
generalized Morse potential �27� captures fundamental prop-
erties of swarming animals. At short range, the potential has
to be repulsive to avoid collisions and to prevent the agents
from interpenetrating each other. An attractive force mimics
the aim of the individual to stay with the group. The attrac-
tion should be of long range, but eventually approach zero to
account for the limited sensing range of animals. An expo-
nentially decaying function meets both demands. Therefore,
we introduce a generalized Morse potential �see Fig. 1�,
which consists of an attractive and a repulsive part. Both are
exponential functions with amplitudes Ca and Cr and ranges
la and lr, respectively,

UM�r�i − r�k� = Cre
−	r�i−r�k	/lr − Cae−	r�i−r�k	/la. �4�

The equilibrium distance of two particles is

r0 =
lrla

lr − la
ln
 lrCa

laCr
� . �5�

For
lr

la
�1, the potential possesses a minimum corresponding

to short-range repulsion and long-range attraction. One can
see that for

lr

la
�1 and

lr

la
�

Cr

Ca
, the minimum would shift to

negative values. Since the absolute value of the interparticle
distance in Eq. �4� is positive, the potential is attractive ev-
erywhere. Therefore, we will concentrate on the parameter
space where

lr

la
�1 and

lr

la
�

Cr

Ca
.

For the consideration of the diffusion of the angular mo-
mentum in three dimensions, we investigate one particle in
an external harmonic potential. For this model, the equations
of motion read

r� = v� , �6a�

v� = − ��v��v� − �2r� + �2D�� . �6b�

In the two-dimensional case, the particle can rotate only
clockwise or counterclockwise. Its angular momentum can-
not change its direction continuously, but has to perform a
stochastic switch. In three dimensions, the particle rotates on
the surface of a sphere such that the absolute value of its
angular momentum is almost fixed, but its direction diffuses.

III. NOISE-INDUCED SWITCHINGS BETWEEN
TRANSLATIONAL AND ROTATIONAL MOTION

A. Hysteresis

Depending on the parameters, the system displays two
different modes of motion: a translational mode and a rota-
tional mode. To study the transition from translation to rota-
tion, we prepare the system in the translational mode in an
arbitrary direction. In this mode, the particles move parallel

with their stationary velocity v0=��1

�2
. The spatial configura-

tion in the center-of-mass system corresponds to the equilib-
rium configuration. Without noise, there are no fluctuations;
the center of mass moves with v0. Increasing the noise gives
rise to fluctuations and leads to a decreasing velocity of the
center of mass �28�. Above a critical noise value Dcrit

trans the
translational motion breaks down and the particles start to
rotate around the center of mass. Whereas for a harmonic
potential the particles rotate in any direction on the equipo-
tential sphere, the interaction leads to coherent motion in a
torus shape structure, with the orientation depending on the
initial conditions �Fig. 2�. The center of mass moves diffu-
sively, therefore the absolute value of its velocity is not zero
and increases with the noise intensity. Starting from the ro-
tational state and decreasing the noise intensity, the system
exhibits a transition to the translational mode at a different
critical noise value Dcrit

rot . Surprisingly, this second transition
back to translation was not observed in the two-dimensional
case. In general, the transitions occur at different noise val-
ues, which leads to a hysteresis curve �Fig. 3�. The decrease
of the center-of-mass velocity with rising noise intensity can
be shown by considering the equation of motion of the
center-of-mass velocity u� = 1

N�i=1
N v� i, whose absolute value

will be labeled as u= 	u� 	. Analogously, the absolute value of
the velocity of the ith particle will be labeled as vi= 	v� i	. The
ensemble average of Eq. �1b� yields

u�̇ = �1u� − �2
1

N
�
i=1

N

vi
2v� i. �7�

The interaction potential is pairwise and therefore averages
to zero. The noise intensity decreases when increasing
the number of particles and is negligible compared to the
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FIG. 1. �Color online� Morse potential as a function of the ab-
solute value of the distance of two particles for two different sets of
parameters: Cr=0.6 �solid line�, Cr=0.1 �dashed line�. Other param-
eter values: lr=0.5, la=2.0, Ca=0.5.
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fluctuations of the individual particles. The velocity of each
particle can be written as the mean velocity plus some de-
viation �v� i, which average to zero. According to �28�, the
average of the third moment of the velocity deviations
��vi

2�v� i� in two spatial dimensions is small compared to the
other terms and can therefore be neglected. This has also
been confirmed by numerical simulations for three spatial
dimensions. From this follows

1

N
�
i=1

N

vi
2v� i =

1

N
�
i=1

N

��u� + �v� i� · �u� + �v� i���u� + �v� i�

= u2u� +
1

N
�
i=1

N

u��vi
2

+
1

N
�
i=1

N

2�u� · �v� i��v� i +
1

N
�
i=1

N

�vi
2�v� i � u2u�

+ u����vi
2�� + 2��u� · �v� i��v� i� . �8�

To evaluate these mean values, we introduce the components
of the velocity fluctuations parallel and perpendicular to the
velocity of the center of mass �v� 
,i and �v��,i �17� with the
absolute values �v
,i and �v�,i, such that �v� i=�v� 
,i+�v��,i.
This yields for the last term in Eq. �8�

��u� · �v� i��v� i� = ��u� · �v� 
,i���v� 
,i + �v��,i��

= u���v
,i
2 � + ��u� · �v� 
,i��v��,i� . �9�

The friction term leads to a correlation of the components of
the velocity and its fluctuations. However, numerical simula-
tions confirm that in first approximation we can neglect the
last term in Eq. �9� compared to the first term. We insert this
result and Eq. �8� into Eq. �7� and obtain

u�̇ = �1u� − �2�u2u� + u��3��v
,i
2 � + ��v�,i

2 ��� . �10�

We find two stationary solutions for the center-of-mass ve-
locity. The first solution corresponds to the rotational mode
where the center of mass is at rest,

u� = 0. �11�

The second solution corresponds to the translational mode
where the center of mass moves with a nonzero velocity in
arbitrary direction whose absolute value is fixed to

u2 =
�1

�2
− 3��v


2� − ��v�
2 � . �12�

In the absence of noise, the center of mass moves with the

stationary velocity of the particles v0=��1

�2
. Increasing the

noise leads to higher velocity deviations, which decreases the
center-of-mass velocity. Also the direction of motion of the
center of mass is not specified and changes in time due to the
noise.

The discontinuity of the center-of-mass velocity allows us
to clearly distinguish the two states. Since it is also easy to
measure, we use it as an order parameter for the system.

B. Influence of a repulsive potential

For the transition from rotation to translation, the critical
noise value decreases with increasing

Cr

Ca
. However, for

lr

la

�
Cr

Ca
�1 the critical noise value decreases with decreasing

Cr

Ca
; below

Cr

Ca
=

lr

la
, no transition to translation takes place. In

this parameter range, the potential does not possess a

FIG. 2. �Color online� Rotational mode: particles move coher-
ently in a torus shape structure. Parameter values: N=1000, �1

=1.6, �2=0.5, Cr=Ca= lr=0.5, la=2.0, D=0.
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FIG. 3. �Color online� Hysteresis curve of the absolute value of
the center-of-mass velocity u versus noise intensity D. The solid
�blue� line represents increasing noise intensity, the dashed �red�
line represents decreasing noise intensity. Note the increase of the
center-of-mass velocity with the noise intensity due to its diffusive
motion in the rotational mode �u�0� and, respectively its decrease
due to fluctuations in the translational mode �u�0�. Parameter val-
ues: N=100,�1=1.6,�2=0.5,Cr=Ca= lr=0.5, la=2.0.
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minimum, i.e., it is continuously attractive. Even without
noise, there is no transition from rotation to translation,
whereas the transition backwards stays unaffected. From this
fact, we conclude that the existence of repulsive forces leads
to a transition from rotation to translation.

To check this hypothesis, we approximate the Morse po-
tential by a harmonic potential with equilibrium distance of
the shape Uapp�r�=a�r−r0�2, with a= �

lrCa

laCr
�la/�la−lr� Cr

2lr
� 1

lr
− 1

la
�

and r0=
lrla

lr−la
ln

lrCa

laCr
, and compare it to the overall attractive

harmonic potential UH�r�=ar2 �see Fig. 4�. The critical noise
value for the transition from translation to rotation is equal
for the Morse potential and the harmonic approximation �not
shown�. The harmonic potential UH is slightly more stable.
The main difference occurs in the transition from rotation to
translation. The harmonic approximation Uapp shows this
transition, though at a different noise value than the Morse
potential. In the case of the harmonic potential UH, the rota-
tional mode is stable even without noise. This supports the
assumption that a short-range repulsive part of the potential
is vital for the existence of the transition from rotation to
translation. For a plausible explanation, one might think of a
Van-der-Waals gas as an analogy. There the attractive forces
between molecules lead to the existence of a fluid or bound
phase. Repulsive forces are treated as an effective volume
that destabilizes the fluid phase. The same effect occurs
when the temperature is increased, which can be interpreted
as increasing the noise intensity. When we now identify the
fluid phase with the translational mode and the gas phase
with the rotational mode, the Van-der-Waals gas explains the
role of repulsive forces for the transition from rotation to
translation.

C. Bistability

For both transitions, we observe the critical noise value to
decrease with increasing amplitude of the repulsive part of
the interaction potential Cr. Yet, the decrease is much faster
for the transition from translation to rotation, which leads to
a parameter region where transitions in both directions occur
at the same noise value. In this region, the system alternates
between the two states. The inset of Fig. 5 shows the center-
of-mass velocity u, which alternates between translation and
rotation �red�. Figure 5 shows the trajectory of the center of
mass. In between parts of ballistic motion, we see some spots
where the system was rotating, which led to a diffusive mo-
tion of the center of mass. The probability distribution of u
depends very sensitively on the noise intensity �Fig. 6�. The
region where this switching behavior can be observed is very
small. Changing the noise value by a few percent leads to a
shift of the transition probabilities, which is sufficient to de-
stroy the switching.

IV. DIFFUSION OF THE ANGULAR MOMENTUM IN
EXTERNAL POTENTIALS

A new effect that occurs in the three-dimensional case is
the diffusion of the angular momentum. Since particles inter-
acting via a Morse-type potential rotate coherently at low
noise intensities, they have a nonzero mean angular momen-
tum whose absolute value is fixed. In three dimensions, its
direction diffuses. For an analytic approach, we need a sim-
pler model that captures this property, and therefore we con-
sider one particle in an external harmonic potential UH�r��
= 1

2�2r�2. It is well known that this system possesses a stable
solution corresponding to a circular motion with radius

FIG. 4. �Color online� Absolute value of the mean center-of-
mass velocity versus noise intensity for a Morse potential �gray
�red�� and a harmonic potential �black�. Solid lines represent in-
creasing noise intensities, dashed lines represent decreasing noise
intensities. In the case of the harmonic potential, the system shows
only the transition from translation to rotation �28�. The latter is
stable even without noise. Including an equilibrium distance �i.e., a
repulsive part� leads to an additional transition from rotation back to
translation. Parameter values: N=20,�1=�2=1; Morse: Cr

=0.6,Ca= lr=0.5, la=2.0; harmonic: a=0.1112,r0=1.0457.

FIG. 5. �Color online� Example of a trajectory of the center of
mass in the bistable regime. The inlay shows the corresponding
velocity. The rotational modes where the velocity is almost zero are
highlighted gray �red�. These lead to a diffusive motion of the
center of mass within the gray �red� circles. In between the system
displays a stochastic trajectory in the translational mode with

mean velocity u�v0=��1

�2
. Parameter values: N=20,�1=0.5,�2

=2.0,Cr=4.0,Ca= lr=0.5, la=2.0,D=0.001 25.
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r0=
v0

� �29�. In the absence of noise, the angular momentum

L� =r�	v� �remember that m=1� is fixed; the direction of mo-
tion depends on the initial conditions. In the two-dimensional
case, the particle can rotate only clockwise or counterclock-
wise. Stochastic forces enable the particle to change its di-
rection of rotation �30�. To do so, the particle has to cross a
barrier of angular momentum �26�. In three dimensions, the
particle moves on the surface of a sphere where it can rotate
in any direction. When applying noise to the three-
dimensional system, the direction of the angular momentum
starts moving diffusively while its absolute value fluctuates
around the noise-free value. As opposed to the two-
dimensional case, the particle changes its direction of motion
continuously; there is no barrier. For one particle in an ex-
ternal harmonic potential, we derive an analytical expression
for the angular diffusion coefficient. This allows an estima-
tion of the time a particle needs to turn its angular momen-
tum.

To calculate this angular diffusion coefficient, we trans-
form the equations of motion �6b� to a set of variables
adapted to the spherical symmetry of the problem. The an-
gular momentum is transformed to spherical coordinates
where 
 is the zenith angle and � is the azimuth angle. This
transformation and its solution for the noise-free determinis-
tic case is shown in the Appendix. To obtain the diffusion
coefficient of the angular momentum, we assume the veloc-

ity to be constant v0=��1

�2
and restrict the impact of noise to

� and 
. From this new set of differential equations, we
obtain the Fokker-Planck equation,

�

�t
P��,
,
,�� = − �
 �

��
+

�

�

�P��,
,
,��

+
D

v0
2
cos2 


�2

�
2 + sin2 

�2

��2

− sin 
 cos 

�2

���

�P��,
,
,�� .

�13�

Here � and 
 denote the polar angles of r� and v� , respec-
tively, in the plane of movement. If the square root of the
noise intensity �2D is low compared to the potential energy
�2r, the rotation of the particle will be much faster than the
diffusion of the angular momentum. Therefore, we can aver-
age over the fast variable 
 and obtain

�

�t
P��,
,�� = − �

�

��
P��,
,��

+
D

2v0
2
 �2

�
2 +
�2

��2�P��,
,�� . �14�

This yields the diffusion coefficient for the polar angle 
 of
the angular momentum for open boundary conditions

D
 =
D

2v0
2 =

D�2

2�1
. �15�

From Eq. �15�, we infer the time the angular momentum
needed to turn around an angle 
 to be

�
2� = 2D
t =
�2

�1
Dt . �16�

To compare the three-dimensional system to the two-
dimensional case, consider the case Lz=0. In two dimen-
sions, this point has to be crossed as the angular momentum
switches from positive to negative values when the particles
change their direction of rotation. In three dimensions, this
corresponds to �
2�= � �

2 �2, since 
 denotes the angle be-

tween L� and the z axis. Inserting �
2�= � �
2 �2 into Eq. �16�

yields

t3d =
4�1

�2�2

1

D
. �17�

Setting �1=5 ,�2=1 we obtain t3d= 2
D �see Fig. 7�. In the

two-dimensional system, the particle has to cross a barrier of
the angular momentum in order to change its direction of
rotation �29�. In the Kramers regime at low noise intensities,
we expect the time to be proportional to an Arrhenius factor
t2d�econst/D �31,32�. For higher noise intensities, this behav-
ior passes to Einstein diffusion with the corresponding time
t�

1
D . This means that the diffusive motion of the angular

momentum in three dimensions is faster than the switching
in the two-dimensional case regardless of the noise intensity
�see Fig. 7�. We found the switching times to decrease with
�. Since � does not appear in the Arrhenius factor, this
points toward a complex forefactor depending on �.
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FIG. 6. �Color online� Probability distribution of the center-of-
mass velocity for different noise values D. �a� D=0.00115, �b� D
=0.0013. Other parameter values as in Fig. 5.
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We now return to the system with many particles globally
coupled by a Morse potential. Due to the asymmetry of the
Morse-type potential, all particles will rotate in the same
direction, leading to a torus shape structure �Fig. 2�. Thus the
average angular momentum equals approximately the angu-
lar momentum of each particle. Surprisingly, we find Eq.
�16� to be still valid. However, in two dimensions the energy
barrier separating the two rotational states grows with the
number of particles, leading to an increase of the switching
times. However, in the many-particle system, the diffusion of
the angular momentum in three dimensions is always faster
than the switching in two dimensions, too.

V. CONCLUSION

Active Brownian particles have been analyzed in a num-
ber of studies. It has been shown that in two dimensions, a
set of particles interacting harmonically exhibits a noise-
induced transition from translational to rotational motion. In
this work, we investigated the extension to three spatial di-
mensions. Additionally, we considered an interaction via a
Morse potential. For a harmonic interaction, the rotational
mode is stable for any noise value. Applying a Morse-type
interaction destabilizes the rotational motion and leads to a
transition back to translational motion for low noise inten-
sity. A harmonic interaction with equilibrium distance, i.e.,
with a repulsive part, also shows this back transition. This
indicates that the existence of a repulsive force is vital for the
transition back to translational motion. It is not yet clear how
exactly the existence of a repulsive force destabilizes the
rotational mode. This will be the subject of further studies.
Moreover, this effect could not be observed in two dimen-
sions. There the rotational motion was stable for all param-
eter values. In general, the transitions occur at different noise
values, resulting in a hysteresis curve. We were able to find
parameter regions where the transitions in both directions

take place at the same noise value. Thus the system switches
persistently between the two modes of motion.

One particle in an external harmonic potential exhibits a
rotational motion. In two dimensions, it can rotate only
clockwise or counterclockwise. Stochastic forces enable the
particle to cross the barrier of the angular momentum and
switch its direction. In three dimensions, the particle can
change its direction of motion continuously. We derived an
analytical expression of the diffusion coefficient of the angu-
lar momentum and showed that the change of the direction
of motion is always faster in three dimensions.
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APPENDIX

In the following, we will derive an analytic expression for
the diffusion coefficient of the angular momentum of one
particle moving actively in an external harmonic equation.
Starting from the equations of motion �6b�,

r�̇ = v� , �A1a�

v�̇ = ��1 − �2v�
2�v� − �2r� + �2D�� , �A1b�

we will now choose a coordinate system adapted to the un-
derlying symmetry of the problem. The particle is expected
to move at a constant speed on a circle on the equipotential
surface. The circle lies on a plane that is defined by the
angular momentum. Under the influence of noise, the angu-
lar momentum moves diffusively in space while its absolute
value fluctuates around its mean value. To describe this an-
gular diffusion, we transform the system to coordinates
adapted to the underlying symmetry of the problem.

We describe the angular momentum in spherical coordi-
nates L, 
, and � where

L� = L�sin 
 cos �,sin 
 sin �,cos 
�

�see Fig. 8�. The plane perpendicular to L� is the plane of
movement. Let us call the intersection of this plane with the
x-y plane the node line. Then the angle � between this node
line and r� defines the position of r� on this plane. The angle 

is defined analogously as the angle between the node line
and v� . The last two variables r and v are the absolute values
of r� and of v� .

Introducing the unity vector in direction of L� , e�L, we can
transform the differential equations for r� and v� into differen-
tial equations of our new variables and obtain in Stratonov-
ich interpretation

ṙ = v cos�� − 
� , �A2�

v̇ = ��1 − �2v
2�v − �2r cos�� − 
� +

�2D

v
v� · �� , �A3�
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FIG. 7. �Color online� The figure displays the time needed for
the angular momentum to turn around �

2 �3D �black, diamonds��
and the time needed for the angular momentum to switch between
L0 and 0 �2D �gray �blue�, triangles��, respectively, versus noise
intensity D for one particle in a harmonic potential, averaged over
1000 runs. In three dimensions, the time follows a power law �solid
line�. In two dimensions, we obtain an exponential correlation
�dashed line� for low noise intensities that passes into a power-law
behavior for higher noise intensities. Parameter values: �1=5,�2

=1,�=1.
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First we will consider the deterministic noise-free case. Then

we get �̇=0 and 
̇=0. So the motion of our particle is fixed
on a plane and therefore reduced to four variables,

ṙ = v cos�� − 
� , �A8�

v̇ = ��1 − �2v
2�v − �2r , �A9�

�̇ = ��1 − �2v
2�v cot � + �2 r

v

cos 


sin �
, �A10�


̇ = −
v
r

cos �

sin 

. �A11�

This system possesses two solutions with ṙ=0 and v̇=0. The
trivial solution r1=v1=0 is unstable. � and 
 are not defined
in this case since r�1=0 and v�1=0. The stable solution reads

r2=
v2

� , v2=��1

�2
, cos��2−
2�=0⇒�2−
2= �� /2 with sta-

tionary angular velocity �̇2= 
̇2= ��.
To calculate the diffusion coefficient of the angular mo-

mentum, we have to leave the deterministic case and include
noise. In first approximation, we consider a stationary veloc-
ity and angular velocity, which are set to the stable solutions

of the deterministic case v0=v2=��1

�2
and r0=r2=

v2

� , respec-
tively. This yields

ṙ0 = 0, �A12�

v̇0 = 0, �A13�

�̇ = � , �A14�
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�
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The corresponding Fokker-Planck equation reads

�
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P��,
,
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,
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angular momentum. The angle between êr and the node line is
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